

The influ on the attac

Introduction Metallic droplets attached to solid Phase field metallic particles in slags lead to production spinodal decor losses in pyrometallurgy. 50.00µm Experimental micrograph of Cu droplets attached to solid particles (E. De Wilde et al. unpublished data)

Input parameters — liquid(spinodal) ---- solid 10 ^x 10⁵ 6 $f(x_M)$ $x_{eq,M}$ $x_{eq,slag}$ = 0.98 **= 0.5** x_{S} variable 0.6 0.4 0.5 0.7 0.9 **8.0** M

Symbol	Description	Value(s)
Δx	Grid spacing	$^{4}/_{\sqrt{10}} 10^{-7} \mathrm{m}$
W	Depth of the double well function	15 · 10 ⁶ J/m³
κ_{ϕ}	Gradient energy coefficient for the solid- liquid interfaces	¹⁵ / ₈ · 10 ⁶ J/m
L	Kinetic coefficient for the evolution of ϕ	10 ^{−30} m³/(J s)
κ_{χ_M}	Gradient energy coefficient for the liquid- liquid interfaces	6 • 10 ^{−6} J/m
M	Mobility coefficient of the metal	10 ⁻¹⁹ m ⁵ /(J s)

phase Particle

 $\phi = 1$ $x_M = x_S \longleftarrow$

Liquid

 $x_M = x_{eq}$

Assumptions:

- **Particle doe**
- Constant mo
- Particles pro
- **Constant T**
- No convecti

$$F = \int [f_{S-L,interf} + f_{\nabla x_M}] dV$$
$$= \int \left[Wg(\phi) + h(\phi) - \frac{A}{d} \right]$$

With $h(\phi) = \phi^3$ Interfacial wid

With γ_s

x_s car

Evolution eq

 $\frac{\partial x_M}{\partial t} = \nabla \left[\mathsf{M} \, \nabla \right]$ $\frac{\partial \phi}{\partial t} =$

to fnemtreged Materials Science & Engineering

Presence of particle \rightarrow
x_S -variation \rightarrow change
Perimeter of the solid p
Distance between partie

		Inge.E	Bellem	nans@	ugent.be				
Inge Bellemans ¹ , Ne ¹ Department of Materials Science and Engineering, Ghen ² Department of Materials Engineering, KU Leuven, Kas	t Univer	oelans sity, Techi Arenberg	5 ² , Kin nologiepai 1 44 (box 2	n Verbe rk 903, B-90 2450), B-300	eken¹ 052 Zwijnaarde (G 01 Heverlee (Leuv	hent), Belgium en), Belgium			
luence of interfacial er	ler	'gy	anc	d pa	rticle	characte	rist		
chment of metallic dro	ple	ets	to s	solic	d parti	cles in lic	qui		
Model					Resi	Its (after evolutio	n of 10		
nodel for solid-liquid binary system (O-M) with omposition in the liquid e-field variable ϕ + composition field x_{M}	xs	<i>Υs,LO</i> [N/m]	Γ Υ <i>ς,LM</i> [N/m]	htiuenc Υ _{LO,LM} [N/m]	Contact angle θ [°]	ACIAL ENERGIES AI Wetting behaviour	nd ini Conto $x_i = 0$		
$250 \qquad \qquad$	0.4	1.2641	4.0093	0.903	/	Non-wetting: only oxide attached	250 200 150 0 50 50		
slag $\phi = 0$ $\phi = 0$ $\phi = 0$ $formula = 0$	0.5	1.2500	2.8140	0.903	/	$\begin{aligned} \gamma_{SLO} - \gamma_{SLM} > \gamma_{LL} \\ & \& \gamma_{SLO} < \gamma_{SLM} \end{aligned}$	250 200 150 100 50 50		
es not react olar volume V_m in all phases esent before droplets	0.6	1.2641	2.0260	0.903	147.54	Low wettability: predominantly oxide attached			
and P ion	0.7	1.3631	1.5604	0.903	102.62	$\begin{aligned} \gamma_{SLO} - \gamma_{SLM} < \gamma_{LL} \\ & \& \gamma_{SLO} < \gamma_{SLM} \end{aligned}$	250 200 150 100 50		
$-\frac{\kappa}{2}(\nabla\phi)^{2} + (1-h(\phi))f_{Liquid}(x_{M}) + h(\phi)f_{Solid}(x_{M})$ $-\frac{\kappa}{2}(\nabla\phi)^{2} + (1-h(\phi))\frac{A_{Sp}}{2}(x_{M} - x_{eq,0})^{2}(x_{M} - x_{eq,1})^{2}$	0.8	1.6318	1.3325	0.903	70.64	High wettability: predominantly metal	50 1 250 200 150 100 50 50		
$\frac{1}{2}(x_{M} - x_{S})^{2} + \frac{\kappa_{x_{M}}}{2}(\nabla x_{M})^{2} dV$	0.9	2.1551	1.2572	0.903	6.09	$\begin{aligned} \gamma_{SLO} - \gamma_{SLM} < \gamma_{LL} \\ & \& \gamma_{SLO} > \gamma_{SLM} \end{aligned}$	200- 200- 150- 100- 50-		
$^{3}(10 - 15\phi + 6\phi^{2})$ Iths and energies: $\gamma = -\frac{1}{2} \sqrt{\kappa - 4} (r - r)^{3}$	0.95	2.5387	1.2504	0.903	/	Full wetting: only metal attached $ \gamma_{SLO} - \gamma_{SLM} > \gamma_{LL}$ & $\gamma_{SLO} > \gamma_{SLM}$	250 200 150 100 50		
$\gamma_{L,L} = \frac{1}{6} \sqrt{\kappa_{x_M} A_{Sp} (x_{eq,1} - x_{eq,0})}$		Influence of particle mor							
$\gamma_{S,L} = \frac{1}{3\sqrt{2}} \sqrt{W\kappa} + \gamma_{S,L} \nabla x_M$		• Particle aspect ratio / perimeter • Proximity • HIGH wettability: as expected: larger perimeter → more attached metal • attached metal • Proximity • More • Proximity • metal • Proximity • More • Proximity • Proximity • O partic • Proximity • P							
$S_{s,L} \nabla x_M \approx \frac{1}{6} \sqrt{\kappa_{x_M} 0.5 (A_{sp} + A_s) (x_{eq,k} - x_s)^3}$		 LOW wettability: not as expected Aspect ratio 50-48 160-15 							
n be used as a parameter to vary the solid-liquid interfacial energies		$x_{S} = 0.60$							
uations			$x_i - 0.0$		50 50 100 150 200 250 50	$ \begin{array}{c} 0 \\ \underline{100 \ 150 \ 200 \ 250} \\ 2 \end{array} $.5 s .5 s		
$\left[\left(1 - h(\phi)\right) f'_{Liquid}(x_M) + h(\phi) f'_{Solid}(x_M) - \kappa_{x_M} \nabla^2 x_M \right] \right]$ $-L \left[Wg'(\phi) + h'(\phi) \left(f_{Solid} - f_{Liquid} \right) - \kappa \nabla^2 \phi \right]$			$x_S = 0.$ $x_i = 0.$	80 63 150 100 50 50 50		-5 -10 -2 -10 -2 -10	s) s 5 s 00 s		
				50	0 100 150 200 250 50	100 150 200 250			

Conclusions

'localized' spinodal decomposition \rightarrow droplets nucleate locally around or even on sides of particle in interfacial energies, contact angles and wetting behaviour (4 regimes) particles \rightarrow number of available positions for metal to be attached to \rightarrow only important in HIGH wettability regime icles \rightarrow no influence on amount of metal attached + but droplets oriented away from other particles when too close to one another

ics d slags

